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Abstract: - The paper presents a feedforward feedback (PID) controller designed for control of glucose 

concentration during the E. coli fed-batch cultivation process. The controller is used to control the feed rate and 

to maintain glucose concentration at a desired set point. Taking into account the measurement system 

particularities, the modified process model is proposed. An equation for correction of the measured glucose 

based on Kalman filter estimates of biomass concentration and bacteria growth rate is suggested. To achieve 

good closed-loop system performance genetic algorithm tuning of the PID controller is used. As a result, the 

optimal PID controller settings are obtained. For a short time the controller sets the control variable and 

maintains it at the desired set point during the process. Based on the proposed model correction, the estimations 

of the process parameters are brought closer to the real values. Tuning of the controller on the basis of a genetic 

algorithm leads to higher level of accuracy and efficiency of the system performance. 

 

Key-Words: - E. coli Cultivation, PID Controller, Tuning, Genetic Algorithm. 

 

1 Introduction 
Fed-batch cultivation process has been widely 

employed for the production of various bioproducts 

including primary and secondary metabolites, 

proteins, and other biopolymers. Fed-batch culture 

is especially beneficial when changing nutrient 

concentrations affect the productivity and yield of a 

desired cultivation product. Since both overfeeding 

and underfeeding of nutrient is detrimental to cell 

growth and product formation, development of a 

suitable feeding control strategy is critical in fed-

batch cultivation.  

Considering cultivation processes, different 

control loops are implemented for control of 

temperature, pH, and dissolved oxygen, as well as 

for the control of volume and anti foam. However, 

commercially available controllers are applied only 

to such well established measurement systems. For 

example, there is a shortage of glucose 

concentration control systems. The main reason for 

that is related to the difficulties in fast and reliable 

on-line measurement of the process variables, 

especially those for the substrate concentration.  

The most widely used controller for industrial 

cultivation processes is the proportional-integral-

derivative (PID) controller. P-term reduces the error 

but does not eliminate it, i.e. an offset between the 

actual and desired value will normally exist. The 

additional I-term corrects the error that occurs 

between the desired value (set point) and the process 

output. Inclusion of the I-term makes the control 

system more likely to oscillate. Inclusion of the  

D-term improves the speed of the responses, and 

consequently serves to suppress the influence of the 

disturbance more strongly [1-2]. However, the D-

term functions are effective only when the controller 

parameters are appropriately tuned. Controller 

tuning is a subjective procedure and it is certainly 

process dependent. Usually, PID controllers are 

poorly tuned due to highly changing dynamics of 

most bioprocesses, caused by the non-linear growth 

of the cells and the changes in the overall 

metabolism. Tuning a PID controller appears to be 
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conceptually intuitive but can be rather hard in 

practice if cultivation processes are considered. Due 

to changes of the system parameters, conventional 

PID controllers result in sub-optimal corrective 

actions and hence require retuning. Therefore, a 

higher degree of experience and technology is 

required for controller tuning in a real plant. While 

for control of continuous cultivation processes the 

controller tuning could be done with traditional 

methodology [3], for fed-batch cultivation processes 

such methodologies are inapplicable.  

In this case, as an alternative of the quality 

controller tuning, metaheuristics could be applied, 

since the tuning procedure is a big challenge for the 

conventional optimization methods. Heuristics can 

obtain suboptimal solution in ordinary situations and 

optimal solution in particular ones. Since the 

considered problem has been known to be  

NP-complete, the use of heuristic techniques can 

solve this problem more efficiently. In the 

probabilistic optimization group, genetic algorithms 

(GA)-based methods are considerable part, which 

extensively are proposed in the literature.  

GA originated from the studies of cellular automata, 

conducted by John Holland and his colleagues at the 

University of Michigan. Holland’s book [4], 

published in 1975, is generally acknowledged as the 

beginning of the research of genetic algorithms. The 

GA is a model of machine learning which derives its 

behaviour from a metaphor of the processes of 

evolution in nature [5]. This is done by the creation 

within a machine of a population of individuals 

represented by chromosomes. A chromosome could 

be an array of real numbers, a binary string, a list of 

components in a database, all depending on the 

specific problem. The GA are highly relevant for 

industrial applications, because they are capable of 

handling problems with non-linear constraints, 

multiple objectives, and dynamic components – 

properties that frequently appear in real-world 

problems [2, 5]. Since their introduction and 

subsequent popularization [4], GA have been 

frequently used as an alternative optimization tool to 

the conventional methods [5, 6] and have been 

successfully applied to a variety of areas, and still 

find increasing acceptance [7-10]. 

Authors in [3] have applied a genetic algorithm 

to tuning of a PID controller for a continuous model 

bioreactor. Compared to some traditional tuning 

methods, the obtained results reflect that the use of 

GA based controllers improves the performance of 

the process in terms of time domain specifications, 

set point tracking, and regulatory changes. Authors 

in [11, 12] show that applying GA global and local 

optimal solution can simultaneously be achieved 

and the most appropriate parameter of PID 

controller can be selected for the given plant and 

system during operation. In [13], much more 

improved performance of considered GA tuned 

controller than the conventional ones has been 

revealed in terms of overshoot, settling time, etc. 

The generality of GA combined with its 

intuitiveness, fast convergence, modest processing 

requirements and most importantly minimal system 

specific information result in increased use of this 

technique for tuning of PID controllers [14-17].  

In this paper, a glucose concentration feed 

forward feedback control system, in the presence of 

measurement and process noises, is designed.  

E. coli MC4110 fed-batch cultivation process is 

considered as a case study. The feedback part of 

control signal is based on the GA tuned universal 

digital PID controller. The main contribution of the 

paper is the proposed correction of the glucose 

measurement system time delay. This correction is 

formed from the process variables estimates 

evaluated by the designed extended Kalman filter 

(EKF). In this way, the influence of measurement 

time delay on control system performance is 

significantly reduced. The designed control system 

successfully keeps the glucose concentration at a 

desired low level. Thus, a prevention of the growth 

inhibition, based on (in a result of) substrate excess 

and optimal operational regime for cultivation 

process are achieved. 

  

2 E. coli MC4110 Fed-Batch 

Cultivation Model 
Cultivation of recombinant micro-organisms, e.g.  

E. coli, in many cases is the only economical way to 

produce pharmaceutical bio-chemicals such as 

interleukins, insulin, interferons, enzymes and 

growth factors. E. coli is still the most important 

host organism for recombinant protein production.  

For E. coli MC4110 cultivation model 

identification, real experimental data are used [18, 

19]. They were obtained in the Institute of Technical 

Chemistry, Hannover University. The cultivation 

conditions, data measurements and GA 

identification procedure are discussed in [18]. As a 

result, on the basis of feeding rate data and off-line 

measurements of biomass and on-line data of 

substrate (glucose) measurements, a mathematical 

model is obtained [18]. It could be represented as 

follows: 

( ) ( ) ( )
( )

,
S tγ ξ

= +

= +

X t f X,Q η t

HX

ɺ

 (1) 
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( ) ( ) ( ) ( ) ( )
T

maxX St t V t tγ γ µ =  X t  (2) 

( )

( ) ( )
( )

( ) ( )
( )

( )

( ) ( )
( )

( ) ( )
( )

( )( )

( )

max

max

,

1

0

S

X X

S S

S

X in S

S / X S S

Q

t Q t
t t t

k t V t

t Q t
t t t

Y k t V t

Q t

γ
µ γ γ

γ

γ
µ γ γ γ

γ

=

 
− 

+ 
 
 − + −
 +
 
 
  

f X

 (3) 

[ ]0 1 0 0=H  (4) 

( ) ( ) ( ) ( ) ( )
max

T

X S Vt t t tγ γ µη η η η =  η t  (5) 

Numerical values of the parameters and initial 

conditions are according to [18]:  

kS = 0.012 g l
-1

,  

YS/X = 0.5,  

γin = 100 g l
-1

,  

t0 = 6.68 h,  

γX(t0) = 1.25 g l
-1

 and γS(t0) = 0.8 g l
-1

. 

In addition, the process noise ( )η t  and 

measurement noise ( )tξ  are set to zero mean white 

Gaussian noises. The corresponding variances are:  

X

D
γη

 = 0.001 g
2
 l

-2
 h

-1
, 

S

D
γη

 = 0.001 g
2
 l

-2
 h

-1
, 

V
Dη  = 0 l

2
 h

-3
 , 

max

D
µη

 = 0.05 l h
-3 

and Dξ =0.0025 g
2
 l

-2
 h

-1
. 

The samples containing the cells are pumped out 

of the bioreactor for the glucose measurement. 

During the analysis time, the cells still consume 

glucose. In the beginning of the cultivation, at lower 

biomass concentration, consumed glucose is 

negligible, but after that the biomass concentration 

has grown and the consumed glucose is significant. 

As a result, the measured glucose concentration is 

not accurate (Fig. 1). To overcome this problem, 

some modifications of the process model are 

required.  

In [19], a correction of glucose concentration 

measurement using constant average specific 

growth rate is considered. The proposed correction 

of glucose concentration through variable specific 

growth rate (i.e. variable maximum specific growth 

rate) is used to ensure more closely the real 

dynamics of the cultivation process conditions. The 

proposed equation for glucose concentration 

measurement correction has the following form: 

( ) ( ) ( ) ( )
COR

X

S S

X / S

µ t t
t t t

Y

γ
γ γ= + ∆  (6) 

The time delay is set to t∆ = 60 s. The specific 

grow rate µ(t) is described by Monod kinetics as: 

( ) ( ) ( )
( )max

S

S S

t
t t

k t

γ
µ µ

γ
=

+
. (7) 

As a result, the corrected glucose measurements 

are closer to the real one. 
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Fig. 1. Measured glucose concentration and the 

corrected one 

 

3 Background of the Control 

Algorithm 
The structure of the herewith designed control 

system is shown in Fig. 2. The presented feedback 

control algorithm is described based on [20-22], as 

follows: 

( ) ( ) ( )( )

( ) ( )( )

( ) ( )( )
1

fb p S

p

S

i

d
S

d

u s K br s s

K
r s s

T

T s
cr s s

T s

N

γ

γ

γ

= − +

+ − +

+ −
+

 (8) 

The control variable ufb(s) is a sum of three 

terms: P-term which is proportional to the control 

error (difference between set point (reference signal) 

r(s) and the process output γS(s)), I-term which is 

proportional to the integral of the control error and, 

D-term which is proportional to the derivative of 

this error. The controller parameters are Kp, Ti, Td, b, 

c and dT

N
. To reduce the influence of measurement 

noise, a first-order low pass filter is used. The 

coefficients b and c are used to weigh out r(s) 

respectively in P-term and in D-term of the 

controller. Typically, the coefficients are chosen to 

be 0 1, 0 1b c≤ ≤ ≤ ≤ . In industrial applications,  

b and c are chosen to be equal to 0 or 1 [20, 21].  
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Fig. 2. Structure of the designed control system 

 

The considered here cultivation process is 

characterized with exponentially rising load 

disturbance (the biomass concentration γX is 

exponentially rising during cultivation). Due to this 

particularity it is proposed the coefficients b and c to 

take values greater than 1. Considering real 

applications usually digital PID controller is 

implemented. There are many techniques for 

discretization [23]. Here for discretization of the 

PID controller (assumption (8)) backward Euler 

method [24] is used. The mathematical description 

of the designed digital PID controller is: 

( ) ( ) ( ) ( )fb p i du k u k u k u k= + +  (9) 

( ) ( ) ( )( )p p Su k K br k kγ= −  (10) 

( ) ( )
( ) ( )( )
( ) ( )( )

1

2

1

1 1

i i

i S

i S

u k u k

b r k k

b r k k

γ

γ

= − +

+ − +

+ − − −

 (11) 

( ) ( )
( ) ( ) ( ) ( )( )

1

1 1

d d d

d S S

u k a u k

b cr k cr k k kγ γ

= − +

+ − − − + −
 (12) 

where: 

0
1

2

0

0

,

0,

,

.

i p

i

i

d

d
d p

T
b K

T

b

Td
a

Td NT

T N
b K

Td NT

=

=

=
+

=
+

 (13) 

The control variable used to control the feed rate 

has the following form: 

( ) ( ) ( )fb ffQ k u k u k= +  (14) 

where 

( ) ( ) ( ) ( )
/

1 X

ff

S X in S

V k k k
u k

Y

µ γ

γ γ
=

−
 (15) 

is feedforward term obtained from γS steady state 

conditions. 

For calculation of the control variable 

assumption (14) on-line measurements of γX(k) and 

V(k) are required. Due to the lack of such data an 

EKF is designed. Based on discretization of process 

model (assumptions (1) - (5)) the following EKF is 

obtained: 

( ) ( )
( ) ( ) ( )( )

( ) ( )

ˆ ˆ1 ( )

ˆ1 1 1 ,

ˆˆ 1 1 ,

S S

S

k k

k k k

k k

γ γ

γ

+ = +

+ + + − +

+ = +

d

EKF

X f X

K

HX

 (16) 

[ ]Tˆ (0) 1.25 0.8 1.35 0.55 ,=X  

( )( ) ( ) ( )( )0
ˆ ˆ ˆk k T k= +df X X f X  (17) 

where:  

( )ˆ ⋅X  – the estimate of ( )⋅X , g⋅l-1
;  

( )ˆ
Sγ ⋅  – the estimate of glucose concentration ( )Sγ ⋅ , 

g⋅l-1
;  

( )⋅EKFK  – the EKF gain, -. 

The EKF gain is presented as: 

( )

( )

( )

T T

1
T

1

( ) ( ) ( )

( ) ( ) ( )T

k

k k k H

H k k k H Dξ

−

+ =

 = + × 

 × + + 

EKF

ηd

ηd

K

F P F D

F P F D

 (18) 

The noise covariance matrixes have the 

following forms: 
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2

0

0.001 0 0 0

0 0.001 0 0
,

0 0 0 0

0 0 0 0.05

0.0025,

T

Dξ

 
 
 =
 
 
 

=

ηD
 (19) 

where: ηdD  is a covariance matrix of discrete-time 

process noise ( ) ( )0k T t=dη η . 

The ( )⋅P  and ( )kF  are obtained from:  

( ) ( )( )
( ) ( ) ( )( )

T

T

1 1

,

(0) diag(0.02 0.02 0 10)

k k H

k k k

+ = − + ×

× +

=

EKF

ηd

P I K

F P F D

P

 (20) 

( )( ) ( )( )0
ˆ ˆ ,k T k= +4F X I Φ X  (21) 

where  

11 12 13 14

21 22 23 24ˆ( ( ))
0 0 0 0

0 0 0 0

a a a a

a a a a
k

 
 
 =
 
 
 

Φ X , (22) 

( ) ( )
( )

( )
( )

max

11

ˆˆ

ˆˆ
S

S

S

k k Q k
a

K k V kγ

µ γ

γ
= −

+
, 

( ) ( ) ( )( )
( )( )

( ) ( ) ( )
( )( )

max

12 2

max

2

ˆ ˆˆ

ˆ

ˆ ˆˆ

ˆ

S

S

S

X S

S

X S

S

k k K k
a

K k

k k k

K k

γ

γ

γ

γ µ γ

γ

γ µ γ

γ

+
= −

+

−
+

, 

( ) ( )
( )13 2

ˆ

ˆ
XQ k k

a
V k

γ
= , 

( ) ( )
( )14

ˆ ˆ

ˆ
S

X S

S

k k
a

K kγ

γ γ

γ
=

+
, 

( ) ( )
( )( )

max

21

/

ˆˆ

ˆ
S

S

S X S

k k
a

Y K kγ

µ γ

γ
= −

+
, 

( )
( )

( ) ( ) ( )
( )( )

( ) ( ) ( )( )
( )( )

max

22 2

/

max

2

/

ˆ ˆˆ

ˆ ˆ

ˆ ˆˆ

ˆ

S

S

S

X S

S X S

X S

S X S

Q k k k k
a

V k Y K k

k k K k

Y K k

γ

γ

γ

γ µ γ

γ

γ µ γ

γ

= − + −
+

+
−

+

,  

( ) ( )( )
( )23 2

ˆ

ˆ

in SQ k k
a

V k

γ γ−
= − , 

( ) ( )
( )( )24

/

ˆ ˆ

ˆ
S

X S

S X S

k k
a

Y K kγ

γ γ

γ
=

+
,  

Finally, the real control variable has the 

following form: 

( ) ( ) ( )
real realreal fb ffQ k u k u k= + , (23) 

where 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
/

,

ˆ ˆˆ1
,

ˆ

real real real real

real

cor

fb p i d

X

ff

S X in S

u k u k u k u k

V k k k
u k

Y

µ γ

γ γ

= + +

=
−

 (24) 

( ) ( ) ( )( )ˆ
real corp p Su k K br k kγ= − , (25) 

( ) ( )

( ) ( )( )
( ) ( )( )

1

2

1

ˆ

ˆ1 1

real real

cor

cor

i i

i S

i S

u k u k

b r k k

b r k k

γ

γ

= − +

+ − +

+ − − −

, (26) 

( ) ( )

( ) ( ) ( ) ( )( )
1

ˆ ˆ1 1

real real

cor cor

d d d

d S S

u k a u k

b cr k cr k k kγ γ

= − +

+ − − − + −
. (27) 

Тhe designed control system variable is based on 

EKF estimations of biomass concentration, 

corrected glucose concentration, specific growth 

rate and volume. The estimate of the corrected 

glucose concentration measurements ( )
corS

ˆ kγ  are 

obtained as: 

( ) ( ) ( ) ( )
cor

X

S S

X / S

ˆµ̂ k k
ˆ ˆk k t

Y

γ
γ γ= + ∆ , (28) 

where 

( ) ( ) ( )
( )max

S

S

S

ˆ k
ˆ ˆk k .

ˆK kγ

γ
µ µ

γ
=

+
 (29) 

To provide control action designed for specific 

process requirements, tuning of the PID controller 

parameters (Kp, Ti, Td, b, c and N) is required. With 

respect to control systems based on linear plant 

models there are many classical and novel or 

modified approaches for PID controller parameters 

tuning [20, 21, 25, 26]. These methods are 

inapplicable to the non-linear control system 

considered here. The regarded fed-batch cultivation 

process cannot be linearized around an equilibrium 

point. If a linear approximation is found, the 

resulting model will be valid only for a small range 

around the linearization point. The controller tuned 

by the linear model will work properly only for this 

limited range and for a very small time interval. 

Therefore, to achieve the best overall PID control it 

is necessary to use non-classical tuning methods for 

the entire operating envelope of the given system. In 

this work for PID controller parameters tuning, 

based on a control system (Fig. 2), GA are applied. 
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4 Background of the Genetic 

Algorithm for PID Controller Tuning 
Outline of the applied here GA could be presented 

as: 

1. [Start] Generate random population 

of n chromosomes. 

2. [Fitness] Evaluate the fitness g(x) of 

each chromosome x in the population. 

3. [New population] Create a new 

population by repeating the following 

steps until the new population is 

complete. 

3.1. [Selection] Select two parent 

chromosomes from a 

population according to their 

fitness. 

3.2. [Crossover] With a crossover 

probability, cross over the 

parents to form new offspring. 

3.3. [Mutation] With a mutation 

probability, mutate new 

offspring at each locus. 

3.4. [Accepting] Place new offspring 

in the new population. 

4. [Replace] Use the newly generated 

population for a further run of the 

algorithm. 

5. [Test] If the end condition is 

satisfied, stop and return the best 

solution in current population. 

6. [Loop] Go to step 2. 

Each individual represents a possible solution, 

and a set of individuals form a population. In a 

population, the fittest individuals are selected for 

mating. The individuals in the population go 

through a process of evolution which is, according 

to Darwin, based on the principles of mutation and 

selection; however, the modern biological evolution 

theory includes also crossover and isolation 

mechanisms improving the adaptiveness of the 

living organisms to their environment. With GA, 

elements are swapped between individuals as if by 

sexual combination and reproduction (crossover), 

and others are changed at random (mutation). New 

generations appear from clones of the current 

population, in proportion to their fitness: a single 

objective function of the parameters that returns a 

numerical value to distinguish between good and 

bad solutions. Fitness is then used to apply selection 

pressure to the population in a ‘Darwinian’ fashion 

(survival of the fittest) [5]. 

The parameters of a GA significantly affect the 

speed of convergence near the optimal solution, as 

well as the accuracy of the solution itself. A brief 

description of the GA parameters used here is 

presented below. The parameters choice is made on 

the basis of previous simulation tests [27, 28].  

Encoding 

A binary 20-bit encoding is considered. Binary 

representation is the most common one, mainly 

because of its relative simplicity. The best known 

selection mechanism, namely, roulette wheel 

selection, is used in the proposed GA.  

Genetic operators 

The genetic operators used in this GA are 

reproduction, crossover and mutation. Offspring are 

normally different from parents due to the process 

of genetic information exchange, e.g. chromosome 

crossover. However, in GA, the reproduction 

process is merely a simple coping action which 

passes the parent’s genetic information to the 

offspring. The reproduction process usually acts as a 

complementary process of crossover and the 

offspring are either created by reproduction or 

crossover. Crossover is an extremely important 

component of GA, as it is responsible for searching 

through the solution space. Crossover can be quite 

complicated and depends (as well as the technique 

of mutation) mainly on the encoding of 

chromosomes. Here, double point crossover is 

employed. After a crossover is performed, mutation 

takes place. Mutation reintroduces diversity into the 

population. In accepted encoding here a bit 

inversion mutation is used. This prevents the 

solution from converging to some local optimal 

solutions; thereby the global optimal solution can be 

obtained. 

Genetic parameters 

Some particularly important parameters of GA 

are the population size (number of individuals) and 

number of generations. If the number of 

chromosomes is too small, GA has fewer 

possibilities to perform crossover and only a small 

part of search space is explored. Small populations 

cause premature convergence. Large population size 

takes longer time to run but converges faster than 

smaller populations. A number of 100 individuals is 

used as a trade-off. The higher crossover rates lead 

to better relative fitness function values.  

A crossover rate of 0.70 was used. Zero mutation 

probability causes premature convergence to a 

suboptimal value. Higher mutation probabilities, on 

the other hand, cause fluctuations and disturb 

convergence. Generally, the mutation probability 

should be high enough to expand the search space, 

but low enough to bring about convergence.  

A mutation probability of 0.05% was used as a 

trade-off. The chosen GA operators and parameters 

are summarized in Table 1. 
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Table 1. Genetic algorithm operators and parameters 

Operator Type Parameter Value 

encoding binary crossover rate 0.70 

crossover double point mutation rate 0.05 

mutation bit inversion 
encoding 

precision 
20 

selection 
roulette wheel 

selection 

number of 

individuals 
50 

fitness 

function 
linear ranking 

number of 

generations 
100 

 

The substantial points of genetic algorithm for 

PID controller parameters tuning are initialization of 

algorithm parameters, representation of 

chromosomes, as well as choice of objective 

function. Some brief discussion about these points is 

presented below. 

Initialization of algorithm parameters 

The most appropriate GA parameters and 

operators, based on previous authors’ results on the 

effects of the different GA parameters on the 

outcome of the GA [18, 27, 28] are used. 

Representation of chromosomes 

Representation of chromosomes is a critical part 

of the GA application. In order to use GA to identify 

controller parameters, it is necessary to encode the 

parameters in accordance with the method of 

concatenated, multi-parameter, mapped, fixed-point 

coding [5]. Here, a chromosome is a sequence of k-

parts, each of them with n (encoding precision) 

genes. In the case of tuning of three controller 

parameters – Kp, Ti and Td, the chromosome is a 

sequence of three parts. In the case of tuning of all 

the defined parameters – Kp, Ti, Td, b, c and N, the 

chromosome is a sequence of six parts. The ranges 

of PID values are rationally chosen and it is true that 

the limitation will influence the results of the GA 

search; it is intended to obtain more stable, efficient 

and accurate solutions.  

For the problem addressed, the ranges of the 

tuning parameters are considered as follows:  

Kp ∈ [0, inf],  

Ti ∈ [0, inf],  

Td ∈ [0, inf],  

b ∈ [0, 5],  

c ∈ [0, 5] and N ∈ [5, 1000].  

Following a random initial choice, entire 

generations of such strings are readily processed in 

accordance with the basic genetic operators of 

selection, crossover and mutation. In particular, the 

selection process ensures that the successive 

generations of PID controller parameters, produced 

by the GA exhibit progressively improving 

behaviour with respect to some fitness measure. 

Objective function 

To evaluate the significance of the tuning 

procedure and controller performance, the integrated 

square error (IISE) criteria is used: 

( )2

0

T

ISEI e t dt= ∫ , (30) 

In this case, error e is the difference between the 

set point and the estimated substrate concentration 

(
spS Sγ γ− ). Based on [19], the 

spSγ  is set to 0.1 g⋅l-1
. 

 

5 Results and discussion 
A control system based on PID controller to control 

the substrate concentration at 0.1 g⋅l-1
 is designed. 

Using the considered objective function (Eq. (30)) 

series of tuning tests are performed. In the tuning 

procedure, the non-linear model of the considered 

process (Eqs. (1) - (5)), extended with the model of 

glucose correction (Eq. (28)), is applied. To obtain 

more realistic tests of the control systems 

applicability and of the tuning procedure 

performance, measurement noise and process noises 

are introduced (see Section 2). As a result of the GA 

tuning, the optimal PID controller settings are 

obtained. The results are presented in Table 2. 

 

Table 2. Optimal controller parameters 

PID controller Digital PID controller 

Parameter Value Parameter Value 

Kp 0.0729 1ib  0.0030 

Ti 0.1377 bd 0.2899 

Td 0.0324 ad 0.3119 

b 0.8087 b 0.8087 

c 1.0158 c 1.0158 

N 12.7543 N 12.7543 

IISE 16.8187   

 

In Fig. 3, resulting dynamics of glucose 

concentration is presented. As it can be seen, the 

controller sets the control variable to the desire set 

point sufficiently fast, and keeps it to the end of 

cultivation process. The maximum deviation from 

the set point is 0.03 g⋅l-1
 at time 15.85 h. Before the 

14 h of cultivation, the maximum deviation is  

0.01 g⋅l-1
. After 14 h, the measured and estimated 

uncorrected glucose concentrations are significantly 

decreased. It this case the noise/signal ratio in the 

measured glucose is increased which mainly affects 

the feedforward term of control signal. As a result, 

the oscillation of the control variable is observed  

(Fig. 3). In this moment, significant increase of the 
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specific growth rate leads to rapid increase of the 

control signal (Fig. 4). Nevertheless, the designed 

controller successfully keeps the glucose 

concentration close to the desired set point. 

Moreover, the control signal does not reach the 

actuator limitations and exhibits no oscillations 

which are undesired for the feed rate pump.  
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Fig. 3. Dynamics of corrected glucose concentration 
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Fig. 4. Control signal 

 
If the proposed correction is not used in the 

control algorithm, an increasing static error for the 

glucose concentration occurs. The desired glucose 

concentration (set point of 0.1 g⋅l-1
) and the resulting 

one are shown in Fig. 5. 

In Fig. 6, resulting dynamics of biomass 

concentration is presented. Good controller 

performance allows the cultivation process to 

continue for the maximum possible time (until the 

bioreactor volume reaches 2 l). As a result, at the 

end of the process high biomass concentration of 

43.3 g⋅l-1
 is obtained. The estimates of biomass and 

glucose concentration, as well as the estimates of 

maximum growth rate and bioreactor volume are 

presented respectively in Figs. 6 - 9. 
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Fig. 5 Dynamics of uncorrected glucose 

concentration 
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Fig. 6. Dynamics of biomass concentration  

and the estimated one 
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Fig. 7. Dynamics of corrected glucose concentration 

and the estimated one 
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Fig. 8. Dynamics of maximum growth rate  

and the estimated one 
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Fig. 9. Dynamics of bioreactor volume  

and the estimated one 

 
The results show that the obtained estimates are 

close to the corresponding real signals. For example, 

the resulting error of glucose concentration 

estimation is shown in Fig. 10. Some statistical 

results for estimation errors are summarized in 

Table 3.  
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Fig. 10. Estimation error of glucose concentration 

Table 3. Statistical results for estimation errors 

Estimation error { }M i  { }σ i  

cor corS S
ˆγ γ−  3.126e-004 0.0073 

X X
ˆγ γ−  -0.221 0.4710 

max max
ˆµ µ−  -0.0043 0.0729 

ˆV V−  2.168e-005 3.2155e-005 

 
The values for the standard deviations of estimation 

errors are sufficiently small. The corresponding 

mean values are close to zero, which is indication 

for unbiased estimates. The maximum difference 

between glucose concentration and reference signal 

achieved here is 0.032 g⋅l-1
. The deviation from the 

set point is very small for the whole time period. In 

parallel, the maximum difference reported in [19] is 

0.06 g⋅l-1
 and it occurs in the second half of the 

process. The resulting standard deviation (
Sγ

σ ) and 

the mean value (
S

M γ ) concerning control variable 

are:  

Sγ
σ = 0.0071 g⋅l-1

 and 
S

M γ = 0.1006 g⋅l-1
  

in this report and 

Sγ
σ  = 0.1513 g⋅l-1

 and 
S

M γ  = 0.1306 g⋅l-1 

in [19]. 
 

6 Conclusion 
In this article, the results of a designed feedforward 

feedback control system, based on the universal 

digital PID controller and extended Kalman filter 

are presented. The controller is used to control feed 

rate and to maintain glucose concentration at the 

desired set point for an E. coli MC4110 fed-batch 

cultivation process. A correction in the measured 

glucose concentration is proposed in order to affect 

the time delay of glucose measurement system. The 

correction is used to correct the estimates of glucose 

concentration obtained with the extended Kalman 

filter. For PID controller parameters GA are applied. 

As a result, an optimal PID controller settings are 

obtained and good closed-loop system performance 

is achieved. For a short time, the GA-tuned PID 

controller sets the glucose concentration and 

maintains it at the desired set point during the 

cultivation process. Sufficiently small values of the 

standard deviations of estimation errors are 

obtained. The estimation mean errors values are 

close to zero which is an indication for unbiased 

estimates. Furthermore, the designed control system 

allows carrying out the E. coli fed-batch cultivation 

process for the maximum permissible time in with 

respect to the maximum bioreactor volume. As a 
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result, the high biomass concentration of  

43.3 g⋅l-1
 is obtained at the end of the cultivation 

process. Finally, it is demonstrated that the genetic 

algorithms provide a simple, efficient and accurate 

approach to PID controllers tuning. Moreover, 

obtained results show that genetic algorithm tuning 

can be considered as an effective methodology for 

achieving high quality and better performance of the 

designed control system. 

 

Nomenclature 

Xγ  the concentration of biomass, g⋅l-1 

Sγ  concentration of substrate (glucose), g⋅l-1 

Q feed rate, l⋅h-1 

V bioreactor volume, l 

inγ  substrate concentration of the feeding 

solution, g⋅l-1
 

µmax maximum growth rate, h
-1 

Sk  saturation constant, g⋅l-1 

/S XY  yield coefficient, - 

Xγ
η  biomass concentration process noises, g⋅l-1 

Sγ
η  substrate concentration process noises, g⋅l-1 

Qη  feed rate process noises, l⋅h-1 

maxµη  maximum growth rate process noises, h
-1

 

( )tξ  measurement noise, g⋅l-1
 

( )fbu s  control variable, l⋅h-1
 

( )r s  reference signal, g⋅l-1
 

( )S sγ  process output, g⋅l-1
 

Kp proportional gain, - 

Ti integral time, h 

Td derivative time, h 

b, c set point weight coefficients, - 

/dT N  low-pass first order filter of D-term time-

constant, h 

T0 sample time, h 

k discrete time, - 

( )ˆ ⋅X  the estimate of ( )⋅X , g⋅l-1
 

( )ˆ
Sγ ⋅  the estimate of glucose concentration 

( )Sγ ⋅ , g⋅l-1
 

( )EKF ⋅K  the EKF gain, - 

( )⋅P  the covariance matrix 

( )kF  the Jacobian of nonlinear function 

( )( )
( ) ( )ˆd
k k

f k
=X X

X  

ηdD  the covariance matrix of discrete-time 

process noise ( ) ( )0d k T t=η η  

Dξ  the covariance of measurement noise 

e error, g⋅l-1
 

t time, h 

T end time of the cultivation, h 

spSγ  set point of glucose concentration, g⋅l-1 

{ }σ i  standard deviation 

{ }M i  mean value 

{ }D i  variance 
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